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In computation of discontinuities in solutions of hyperbolic equations, the random choice 
method gives a zero viscosity numerical solution with perfect resolution but first-order 
position errors -+2.5dx. The Lax-Wendroff scheme gives very small first-order position 
errors, but resolution errors -12.5dx. We propose two very simple tracking methods in the 
context of the random choice method, which combine the best features of both methods: 
perfect resolution and good accuracy. We compare the above with tracking in the context of 
the Lax-Wendroff scheme. The latter method is morre complicated, but much more accurate 
than any of the other methods considered here. 

1. INTRODUCTION 

Hyperbolic equations are marginally stable, and in numerical calculations they 
typically generate unstable oscillations. It is customary to control these oscillations 
numerically by inclusion of a viscous damping term. Since the inclusion of a new 
term (or the modification of a coefficient, so that a previously negligible term 
becomes significant) changes the equation, it must be anticipated that in some cases 
the resulting change in the equation and its solution is undesirable. As an example, 
we mention combustion chemistry: a numerical mixing of burned and unburned 
reagents across the flame front would significantly alter the problem [3, 71. A second 
example ocurs in the use of a surfactant as a tertiary recovery agent in petroleum 
reservoir engineering: numerical dispersion of the surfactant away from a water oil 
concentration front would again alter the problem [ 1, 111. 

Among the methods which can be used for these problems, we mention: the 
method of characteristics, mesh refinement, shock-fitting, and the random choice 
method [4, 21. The latter method has already been applied to a number of practical 
situations [ 1-3, 8, 131, but is not widely understood from a numerical point of view. 
We analyze tracking methodss (i.e., mesh refinement and shock-fitting) in the context 
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of the random choice method. We find that the tracking is remarkably simple. For 
example, in the case of mesh refinement, one additional mesh point is sufficient. The 
motivation for this work is twofold. First, we want to test methods in one dimension 
which may be useful in two dimensions, and second, we want to analyze the sources 
of the errors in the one-dimensional random choice method. This is done by turning 
the errors o.ff one at a time. 

In this paper we consider mainly Burgers’ equation 

24, + uu, = 0. 

Some of our results, reported earlier in IS], indicate that our conclusions based on 
Burgers’ equation extend to the equations of gas dynamics. In the authors’ judgment 
the proposed methods are even more advantageous in the case of contact discon- 
tinuities, which are blurred by standard difference schemes. See Section 8, and 
especially Fig. 10. The posibility of extending these methods to two dimensions is 
beyond the scope of the present paper, but we can report that an initial phase of this 
extension (passive tracking) is now operating satisfactorily and will be described in a 
subsequent publication. 

2. THE RANDOM CHOICE METHOD 

General references for this method are [9, 10, 141. In the RC method, the solution 
at time t = nAt is taken to be piecewice constant on intervals of size Ax, with discon- 
tinuities at (i + l/2) Ax, i.e., 

dAx)((i + a) Ax, n At) = Uy for -+<a<+, (2.1) 

and for i = 1, 2 ,..., and for n = 0, l,.... An exact solution can then be given for 

nAt<t<(n+l)At. (2.2) 

In fact, each jump discontinuity gives rise to a Riemann problem [4]. (See Fig. 1.) By 
definition a Riemann problem is a Cauchy problem for a hyperbolic equation in one 
dimension, with data that have a single jump discontinuity and are otherwise 
constant. For a Riemann problem with a jump discontinuity at x = 0, the solution is 
a function of x/t. For an n x n system, the solution will generally consist of n 
distinct, noninteracting waves, although a more complicated wave structure can 
result. The Riemann problem can be reduced to a nonlinear functional equation, and 
it is feasible to solve it numerically, at each mesh point and time step, for a number 
of problems which have been studied to date. Because of finite propagation speed, 
any problem with piecewise constant data can be solved for a time interval (as in 
(2.1)) merely by putting together solutions of Riemann problems. The differential 
equation, in the form of a nonlinear conservation law, 

u, +f@>., = 0, (2.3 I 
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FIG. 1. The Riemann problem for Burgers’ equation. 

and the associated entropy condition define uniquely the solutions of these Riemann 
problems. An aproximate solution ucAX) is obtained by this constructionwhich is now 
described in detail. 

We denote by 4(x, t, ul., u,) the solution of the Riemann problem with Cauchy 
data at t = 0 given by u = u,, for x < 0 and u = u, for x > 0. (See Fig. 1.) Given U:l, 
i= 1, 2,..., we define 

dAx)((i + + + a) Ax, (n + b) At) = @(a Ax, b At, 177, U;, ,) (2.4) 

for 

3<ac31 O<b<l, i = 1, 2,.... 

This procedure is well defined provided At is less than Ax/2 divided by the maximum 
characteristic speed. Thus ucAX) is not piecewise constant for t = (I + 1) At - 0. By a 
sampling procedure, depending on a sequence (0,) equidistributed [9] on [O, 11 we 
define the new constants 

U!f’ = I dAX)(Ax(i + 8,+ ,), (n + 1) At - 0) (2.5) 

so that the inductive construction of utAX) can continue. It is easy to combine (2.4) 
and (2.5) to obtain the RCM procedure. This version avoids staggered grids and is 
more convenient for tracking shocks and for multidimensional problems. Sampling 
means that at each mesh time t = n At, dAX) is forced to be piecewise constant, and 
the value of this constant (2.5) is determined by sampling the values 

u(Ax)l,=(n+ l)At-0. 

By definition, a sequence of numbers (0,}, 0 < 8, < 1, is equidistributed in IO,1 ] if for 
any subinterval [a, b] c [0, 11, the fraction of n’s (asymptotically for large n) with 
f?,E (a,b] is just [b-al. 
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The effect of this construction is that the solution is viewed as being composed of 
elementary waves. Throughout the calculation, each wave preserves its integrity 
exactly, but its position and velocity are correct only on the average and are subject 
to random errors. 

As long as the wave does not interact with other waves, its motion is a random 
walk, governed by the equidistributed sequence (8,). The more rapidly 8, is 
equidistributed, the smaller are the position errors in the wave. If P(t) denotes the 
position of the wave at time t and 

is the error in P(t), then theory of equidistributed numbers [6] shows that for t 
bounded 

I aP(t 0( 1) Ax(l In Ax1 + 1) (2.6) 

is an optimal bound. No choice of 0, can improve on (2.6) for all wave speeds. 
Further (2.6) is sharp in the sense that it is achieved for some examples of 
equidistributed sequences { 0,, }. In particular, we mention 

6’,=nd2 (mod 1) 

and a Van der Corput sequence for which 

(2.7) 

8, =. 1,i,i2 . . . (2.8) 

is a binary number where n = . . . i,Z,l,, is the binary representation of n. Thus the Van 
der Corput sequence (2.8) is given as 

{On}={’ ’ 3 ’ 5 3 ’ } T,a,a~a,-T9-$-~a,*** * 

A numerical analysis of GP(t)/Ax for these {I?),} and a variety of wave speeds 
revealed the following behavior. bP(t)/Ax consists of rapid oscillations, of magnitude 
between 1 and 2, between slowly varying upper and lower envelopes. The envelopes 
change slowly with time and somewhat more rapidly with the dimensionless wave 
speed 

ud = Udimensionless = u At/Ax. 

Note that ]ud ( < + is the Courant-Friedrichs-Lewy stability condition. For the Van 
der Corput sequence, the speeds near dyadic rationals are exceptional: for ud a 
dyadic rational, &‘(t)/Ax is a periodic function of t. Near the small denominator 
dyadic rationals, ud = 0, &, GP(t)/Ax has an exceptional character. Elsewhere, we 
found lower and upper envelopes for S(t) with the approximate values 0 and 1.5, 
respectively, for up to 2000 time steps. Typical plots are shown in Fig. 2a. 

The sequence (2.7) has more nearly symmetric envelopes but which cannot be 
approximated by a time-independent constant; see Fig. 2b. 
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FIG. 2a. Deviation in position of a characteristic curve as a function of t, measured in units of AX, 
for the Van der Corput random number generator. 

In Fig. 3, we show the Cauchy data used in this paper. The label abed stands for 
4-2) = a, u(0) = b, c, u(+2) = d, at time t = 0. 

3. TRACKING I: ONE-POINT MESH REFINEMENT (PCR) 

In the random choice method, the primary source of error in the position P(t) of 
the discontinuity under consideration, of course, is the statistical fluctuations in the 
position of each wave, as portrayed in Fig. 2. A secondary source of error arises from 
incorrectly positioned waves of the same family as P. Additionally, (a) incorrectly 
positioned waves of distinct families also contribute to the eror, and finally, (b) there 
is an error (unrelated to the statistics) resulting from the fact that the speed in P is 
computed by a first-order accurate Euler ordinary differential equation time step. (b) 
is the minimum error associated with any first-order scheme, and, for’ a wave or 
characteristic moving through an otherwise smooth solution, results from a first-order 
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FIG. 2b. Deviation in position of a characteristic curve as a function of 1, measured in units of As. 
for the n \/2 random number generator. 

II = 5 _- 

U-d. 

” = d . . 

” = c -. 

x = -2 x-c x-2 

FIG. 3. Cauchy data. 
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X = REGULAR DISCONTlNUlTY pOIt0 

0 = DELETED DISCONTINUITY POINT 

B = INSERTED DISCONTINUITY POINT 

FIG. 4. Mesh refinement used to track a discontinuity. 

5.00000 -x- 15.0000 

1 
FIG. 5a. u vs. x for the Lax-Wendroff methods. 
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approximation of the smooth part of the solution by piecewise constant data at each 
time step. Thus, this error could also be viewed as an aspect of (b) and of the 
secondary error. 

The effect of (a) was analyzed earlier [S] and is smaller than the secondary error. 
For this reason we do not consider it further, and concentrate on Burgers’ equation, 
which has only one family of waves. The effect of (b) is about (O.Oldx) T in our 
experiments, i.e., about 20 times smaller than the secondary error. Thus, we concen- 
trate on primary and secondary errors. 

The one-point mesh refinement is designed to eliminated only primary errors [5 1, 
A new discontinuity point is introduced at each time step t = (I + 1) At, located 
exactly on the discontinuity in the computed solution (2.5), using one step of a first- 
order Euler ordinary differential equation scheme. (See Fig. 4.) Prior to the sampling, 
neighboring discontinuity points are then deleted, to preserve a CFL stability 

;/ 
: - 2.7 

FIG. 5b. u vs. x for the random choice method. 
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condition for a future time step. The sampling on the two enlarged intervals 
neighboring the shock is done by stretching linearly in (2.4). The result is that the 
sampling error in the discontinuity is zero. Thus, we are left only with the secondary 
error resulting from the interaction of the discontinuity with first-order errors in the 
positions of the other smaller waves. 

In order to implement the one-point mesh refinement, we use a one-step scheme 
(i.e., the grid is not staggered)) in contrast to [4,2]. See Fig. 4. 

4. TRACKING I: FIRST-ORDER SHOCK-FITTING (TRC) 

The solutions of Section 3 contain a systematic first-order error. This error is a 
stopping time effect, due to position fluctuations in the rarefaction waves with which 
P is interacting. Because waves of the same family have fairly similar speeds, the 
approach of these interacting waves is oblique. The stopping time is the time of first 
interaction of the shock and the rarefaction wave. After this first interaction, the 
waves coalesce and no longer have a separate identity. Due to the slow approach 
(about 40 time steps in our problem), the stopping time is governed by the envelope 
of the rarefaction wave position and is essentially unrelated to rapid fluctuations in 
the rarefaction wave position. In case the relevant (right or left) envelope is not at 
zero, all incoming rarefaction waves will have the same sign in their stopping time 
error (normally they will interact too soon). In other words, because of statistical 
fluctuations in the speed of the characteristics, the characteristics tend to hit the 
shock too early. This gives a small, but systematic error in shock speed, never larger 
than OSdx per unit time, in the runs we considered. 

For the VdC sequence the envelopes appear to be fairly regular, and have a 
uniform shift, so that the left envelope of the rarefaction wave very nearly coincides 
with its exact position, while the right envelope is located at a distance perhaps 1.5Ax 
to the right of its exact position; cf. Fig. 2. 

To test this interpretation of the stopping time errors, we modified the one-point 
mesh refinement solution to allow a correction for this effect. We chose a very simple 
correction, which then brought the method close to the shock-fitting of [ 121. The idea 
is to let the solution be multivalued in a small neighborhood of the tracked shock. To 
simplify the conceptual discussion, we use a pair of functions u[(x, t) and u,(x, t), so 
that the solution is double valued everywhere. Each single-valued function, U, and ur, 
is advanced by the ordinary sampling method or by a Eulerian finite difference 
scheme. In this way, the dynamics which govern uI aand u, never see the shock 
discontinuity. After advancing both U, and u,. by one time step, the shock position is 
advanced one time step, as a solution of an ordinary differential equation. With the 
multivalued solution, it is posible to postpone the shock-rarefaction cancellation, so 
that in effect it occurs after the rarefaction wave has progressed beyond the shock by 
a specified distance, determined by the envelope of the random number generator. In 
other words, the ordinary differential equation which advances the position of the 



FLUID DISCONTINUITIES 345 

discontinuity in time is defined by means of the two branches of the double-valued 
solution. The double-valued solution is evaluated, however, not at the discontinuity 
position, but at the position corrected for the envelope of the random number 
generator. The construction, desired here for a single-component equation such as 
Burgers’ equation can be modified for a multi-component equation such as gas 
dynamics. The initialization of uI (x, t = 0) and U, (x, t = 0) is very simple. We define 
u,(u,) to be the Cauchy data at the left (right) of the shock, and we extrapolate it 
continuously as a constant at the right (left) of the shock. This procedure is adequate 
for the first-order random choice method with tracking. 

5. TRACKING III: TRACKED LAX WENDROFF (TLW) 

Here we use the (second-order accurate) Richtmeyer version of the Lax Wendroff 
scheme to advance the time step in each single-valued component U, and U, of u, and 

-2J- 
0.00000 -t- 4.00000 -2.00000 -(P-Pexsct)/h- 4.00000 MOQ(EU.MFGRFaC 

FIG. 6a. 6P/h vs. 1 for the random choice solution-14 choices of Cauchy data. 
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a first-order ODE to advance the shock position. The initialization of u, and U, is 
done as before, except that the extrapolation to the unphysical region required 
matching at least first derivatives (first-order extrapolation). 

The position of the shock obtained in this way is identical to the one obtained by 
solving the ODE using the analytic solution which can easily be computed for our 
Cauchy data. This indicates that all PDE errors have become negligible: in fact, now 
6P z (O.Oldx) T. 

We emphasize as essential two features of the methods for tracking I, II: the 
zeroth-order (Le., continuous) double-valued extrapolation of the solution and subse- 
quent location of the discontinuity by the method of characteristics. We intend to test 
these methods in two-dimensional calculations. The zeroth-order extrapolation of the 
first-order tracking is elementary. Since a discontinuous derivative in the solution 
does not cause a numerical instability in RCM, the extrapolation need only be 
continuous. In one dimension, extrapolation by a constant is sufftcient. Thus, adap- 

-1 +.ooooo -t- 4.00000 -1.00000 -(P-Pexach)/h- 1.00000 5KCX EtBRh! US TIE 

FmLw 

FIG. 6b. 6P/h vs. t for the Lax-Wendroff solution-14 choices of Cauchy data. 
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tation to more complicated equations, such as gas dynamics, causes no additional 
problems. (See Section 8.) The extrapolation for second-order tracking should have 
continuous first derivatives. We have not determined whether this is practical for 
more complicated problems. 

6. STANDARD FINITE DIFFERENCE SCHEME 

For comparison with the other schemes, we used the Richtmeyer two-step version 
of the Lax-Wendroff scheme, with nonlinear viscosity. The viscosity was so small 
that it did not eliminate completely the overshoots at the shock. To define the spread, 
we first located the right and left edges of the shock region, defined so that, for 
example, at the upper edge of the shock, u takes a value which is within 97% of its 
peak, as measured from the low point. The spread is the distance between the edges, 
and we located the shock position as the midpoint of the edges. 

T 

-3.00000 -(P-mxact)h- 1.00000 SHXX 0EU.M FIR m 

FIG. 6c. SP/h vs. 1 for the one-point mesh refinement-14 choices of Cauchy data. 
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7. COMPARISON OF RESULTS 

We solve Burgers’ equation by five methods, with 14 choices of Cauchy data, each 
consisting of a shock of height 2 facing a rarefaction wave of unit strength. The time 
intervalisO,<t~T=4.Wechoseh=dx=0.1andk=dt=0.0133.See[5)forthe 
effect of mesh refinement. 

In Fig. 5, we plot the solution as a function of x, for four selected times, for the 
Lax-Wendroff and random choice methods. 

In Table I, we summarize the results by comparing worst case data for live 
methods. Because of the one-sided bias of the Van der Corput generator, the worst 
case PRC results are not as good as the n d2PRC results reported earlier [5]. The 
plot of #/Ax vs time is given in Figs. 6a-e for five methods. These plots are not 
graphs of solutions, but represent errors, normalized by division by mesh length. 
Thus they are the coefficients of Ax in a first-order estimate of the form 

error Q 0( 1) Ax. 

1.5T 

1 
-’ 0.00000 -t- 4.00000 -1.00000 -(P-Paxa&)/h- 1.50000 SMXXDEU.MFa(TRC 

FIG. 6d. SP/h vs. t for the first-order shock-fitting-14 choices of Cauchy data. 
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TABLE I 

Comparison of Worst Case Data for Five Methods 

Method 
Defined 

in Spread 

Accuracy 

/6P(t= I)1 / 6P(t = 4)/ 

LW Section 6 5Ax 0.3 Ax 0.8 Ax 
RC Section 2 0 2.3 Ax 3.7 Ax 

PRC Section 3 0 0.8 Ax 2.2 Ax 
TRC Section 4 0 0.3 Ax Ax 
TLW Section 5 0 0.025 Ax 0.06 Ax 

-.lOJ- o.oQooo -t- 4.om -.100000 -(P-hc4&)/h- .100000 sin LmJ./H Fm TLU 

FIG. 6e. 6P/h vs. t for tracked Lax-Wendroff-14 choices of Cauchy data. 
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The main information from these graphs is already contained in Table I, and the 
graphs are included only as supporting evidence. 

Note that the scale of the vertical axis is not the same within these five graphs. The 
plotting time was every 30 time steps. Plotting every time step would introduce more 
fluctuations into the RC and LW plots, but not otherwise effect the appearance of the 
graphs. The definition chosen for shock position in LW is constrained to be an 
integer or half-integer multiple of a mesh point, which accounts for the lack of 
smoothness in these plots. The RC plots fluctuate because of the statistics inherent to 
the methods. In Figs. 7a and b, we compare five methods for fixed choices of Cauchy 
data. In Fig. 8, we plot shock position vs. time for all live methods. Note that the 
fluctuating RC shock position stays within the LW upper and lower limits. All 
tracking methods give good results and are too close to the exact solution to be 
labeled. All tracking methods have perfect resolution and good accuracy. Neither 
tracking nor the random choice method introduce programming complexities. At least 

0.00000 -t- 4.00000 -1.00000 -(P-Psxactm- 3.00000 sHIxoEu./!lm33 13 

FIG. 7a. 6Pjh vs. t for five methods and one choice of data. 



FLUID DISCONTINUITIES 351 

for first-order tracking (zeroth-order extrapolation), extension to more complicated 
problems may be practical. 

8. GAS DYNAMICS 

In this section, we summarize and extend results reported earlier [5 J. We solved 
the one-dimensional equations of gas dynamics for isentropic flow of an ideal gas 
with y = 1.4. We used both the RC method (Section 2) and the PRC method 
(Section 3), for the following Cauchy data: velocity = -lo2 m/set, constant density 
(-5 kg/m3) and pressure with a jump discontinuity from 5 X 10’ to 1 X lo5 N/m2. 
We tracked either the shock or the contact discontinuity. The results were so similar 
to the ones for Burgers’ equation that the authors decided to use only the later 
equation to make complete comparisons of the different methods. 

0.00000 -t- ~.00000 -2.00000 -(P-Pe*4ct)/h- 2.00000 SHm cEU.M Fm -2 0 -2 -2 

FIG. 7b. 6P/h vs. t for five methods and a second choice of Cauchy data. 
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FIG. 8. Shock position vs. time for five methods. 

8 

8 
32 13 I 53 2 00 3 00 4 00 6 00 6m 700 son 9 03 

SHOCK POSITION hERS) 

FIG. 9. Shock position vs. time in gas dynamics, for the untracked (RC) and tracked (PRC) 
methods. 
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CONTACT DI~C~~TINUI~ HERS) 

FIG. 10. Contact position vs. time in gas dynamics, for the untracked (RC) and tracked (PRC) 
methods. 

We have plotted the position of the discontinuity Z’(t) vs. t for both tracked and 
untracked methods, and for the exact solution. The discontinuity is a shock in Fig. 9 
and a contact discontinuity in Fig. 10. In both figures the tracked solution coincides 
with the exact solution, within the accuracy of the plot. Since an analytic solution 
was not available, the numerical solution obtained from a much liner mesh was 
considered as the exact solution. 
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